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Abstract – Finite element equations for electromagnetic fields are examined, in particular nodal elements 

using scalar potential formulation and edge elements for vector potential formulation. It is shown how the 

equations usually obtained via variational approach may be more conveniently derived using integral 

methods employing a geometrical description of the interpolating functions of edge and facet elements. 

Moreover, the resultant equations describe the equivalent multi-branch circuit models.      

 
  Introduction   

 
Finite element equations are commonly derived using a variational approach, including weak forms 

(the Galerkin weighted residual method) and/or a strong formulation via a functional (the Rayleigh-

Ritz method). These equations have various geometrical interpretations [1] and may be explained 

using the language of circuit theory by considering the nodal or loop descriptions of equivalent 

magnetic or electric circuits [2, 3]. The classical equivalent circuits, however, arise from integral 

formulations. In this work we will demonstrate that by applying appropriate geometrical forms to 

the interpolating functions of an edge or a facet element the finite element equations may also be 

derived via integral methods. We will show that by applying approximate integration in the finite 

element formulation for a mesh with rectangular parallelepiped elements classical expressions for 

magnetic and electric networks emerge. Both magnetic and electric fields are considered, while for 

the electric fields conducting and displacement currents may be present. 

 
  Geometrical representation of interpolating functions of finite elements  

 
Consider the interpolating functions of an 8-node, 6-facet element (Fig 1a), which allow for the 

field to be determined at an arbitrary point P within the element. These functions are related to 

geometrical forms of eight hexahedra vi defined by drawing straight lines through the point P as 

shown in Fig. 1. It is well known that the ratio of the volume of the ith hexahedron to the element 

volume Ve is related to the ith interpolating function of the nodal element, but it is rarely 

appreciated that the facets and edges of the volume vi inside the element represent interpolating 

functions of the associated edge or facet elements. For example, the interpolating function we4,8 of 

the edge element for the edge P4P8 expresses the ratio of the facet vector s4,8 to the volume Ve 

(Fig.1a), while the ratio ri/Ve describes the interpolating function wfi of the facet element for the 

facet Si. In a similar manner the interpolating functions for triangular prisms and pentahedron 

elements may be expressed. As an example, for the pentahedron of Fig. 1b, the expressions for the 

interpolating functions of the edge element for the edges P4P5 and P2P5 take the form 

we4,5=s4,5/(2Ve) and we2,5= s2,5/Ve, respectively, while the interpolating functions of the facet element 

for the facets S3 and S4 are given by wf3=r3/(2Ve) and wf4=r4/Ve, respectively.  

 



By analysing the relevant integrals, where the geometrical forms provided are integrands, it may be 

easily inferred that the volume integral in Ve of the product of wei,j and the current density vector, or 

flux density vector, represents current, or flux, associated with the region next to PiPj. At the same 

time the volume integral of the product of wfi and the magnetic field strength represents the average 

value of voltage. 

 

In 2D systems, where the z component of the field is absent, e.g. Hz 0, and the other components 

are functions of x and y only, the element depicted in Fig. 1b is reduced to a triangle with vertices 

P1P2P3. The four-sided facets of the pentahedron then „collapse‟ to the sides of a triangle, e.g. the 

facet S1 becomes the edge P2P3. The edges PiPi+3, (i 1, 2, 3) of a prism, parallel to the z axis, are 

represented in 2D by nodes Pi. The functions of the edge element for these edges PiPi+3 become in 

2D the functions of the nodal element for the nodes Pi, while the functions of the facet element for 

the edges of the prism become similar to the functions of the edge element for the edge of the 

triangular facets. This similarity arises due to the specific properties of the function describing the 

pentahedron when the point P lies on the triangular surface of the facet, and thus its z coordinate of 

point P equals zero. The consequence of this similarity is the fact that the scalar and vector 

potential formulations in 2D are similar. 
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Fig.1. Geometric representation of interpolation functions of hexahedron (a) and 9-edge pentahedron (b). 

 
  Integral formulations of the finite element equations  

 
We consider both vector potential (A for the magnetic field and T for the electric field) and scalar 

potential formulations (  for the magnetic field and V for the electric field). It was noted in [2] that 

the finite element equations formulated for nodal elements and scalar potentials are related to nodal 

equations of an edge network (EN) with branches assigned to element edges. The equations 

describing the edge values of vector potentials represent loop (mesh) equations of a facet network 

(FN) with nodes positioned in element centres and branches passing through the facets. Figure 2 

shows the edge and facet models of single hexahedron and pentahedron elements. By appropriate 

connections between elements we create the network model of the discretised volume. In the case 

of the edge network we make parallel connections between branches associated with common 

element edges. The facet network, on the other hand, involves connecting in series the branches of 

the facet models of elements with a common facet. We first consider the equations for the edge 

model, that is the scalar potential formulation using nodal elements. 

 

Integral formulations for scalar potentials and nodal elements 
 

A single nodal equation of the edge network results from the summation of currents or fluxes in the 

branches having common nodes. The currents ii,j and fluxes i,j in the branch PiPj associated with 

the element edge are described by 



 
eV jeiji vi d,, Jw ,            

eV jeiji vd,, Bw . (1a,b) 
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Fig. 2. Edge and facet models of hexahedron (a) and 9-edge pentahedron (b). 

 

Next the constitutive equations are imposed J E+d( E)/dt and B H and the E and H vectors are 

expressed in terms of the functions of the edge element, hence 

 

 
qp

V qepjeiqEpji
e

vui
,

,,,, dww ,      
qp

V qepjeiqHpji
e

vu
,

,,,, dww . (2a,b) 

 

In the above equations the summation includes all edges PpPq of the element, where +p  

(p=d/dt), and uEp,q, uHp,q are the edge values of vectors E and H, respectively. These values 

represent the voltages on the elements of the equivalent element model (see Fig. 2), uHp,q  is the 

voltage across the permeance and uEp,q  the voltage across the parallel connection of the capacitance 

and conductance. The relationship (2) suggests that in the equivalent models of the element there 

exist mutual couplings between branches, as in the expressions for current and flux in the branch 

PiPj we have not only voltages in this branch but also in other branches of the element. 

Consequently the mass matrices for nodal element method are non-diagonal. 

 

By using the substitutions 

 

 TAE tV d/dgrad ,       THgrad , (3a,b) 

 

the edge values of vectors H and E may be expressed as  

 

 qppqqEp eVVu ,, ,          qppqqHpu ,, , (4a,b) 

 

where q, p, Vq, Vp are the nodal values of scalar potential for nodes Pq, Pp,  and p,q and ep,q are 

the edge values of T and dA/dt, respectively, and represent the sources of magnetic and electric 

field. Substituting (4) to (2) yields 
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,
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where isi,j is the current source and si,j is the flux source related to branch PiPj,  
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It has already been noted that a single equation of the nodal element formulation may be related to 

a nodal equation of the edge network and is found by equalling to zero the sum of currents or 

fluxes in branches with a common node. For the node Pi we may therefore write 

 

 0,
j

jii ,          0,
j

ji . (7a,b) 

 

where j is the node index Pj (j=1,2,..n) of all n branches PiPj containing the node Pi.  

Substituting (5) into (7) and some further manipulation results in finite element formulation in 

terms of the scalar potential, which may be written as 
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where Vej is the volume of the element containing the edge PiPj.  

 

Integral formulations for vector potentials and edge elements 

 
The derivations of the last section referred to the final element equations formulated in terms of the 

scalar potentials. The substitutions (3) are also used in the vector potential formulations. A volume 

integral then needs to be considered of the products of the edge element functions and relevenat 

terms in (3). Both sides of (3) are multiplied by a function wfi of the facet element for the ith facet 

and the resultant expressions are integrated over the element volume, which ultimately leads to 

 

 
e ee V V fifiV fi vvv dddgrad TwHww , 

e ee V V fifiV fi vtvvV d)d/d(ddgrad AwEww . (9a,b) 

 

It can be shown that 

 

 QSiV fi
e

vddgraw ,        QSiV fi VVvV
e

ddgraw , (10a,b) 

 

where Si and VSi are average values of potentials  and V for the ith facet, respectively, assigned 
in Fig. 2 to the node Si, while Q and VQ denote average values of potentials  and V in the 
element, associated with the node Qe. Through using (10) the relationship (9) may be written as 
 

 iHimiQSi uu ,           iEieiQSi euuVV ,  (11a,b) 

 

where 
 

 
eV fiHi vu dHw ,        

eV fiEi vu dEw , (12a,b) 

 

 
eV fii vdTw ,      tve

eV fii d)d(d Aw . (13a,b) 

 

The equations (11) describe inter-nodal voltages umi, uei for the branch QeSi of the facet network 

(see Fig 2). The terms uHi and uEi represent voltages across the reluctance and across the impedance 

of the given branch, respectively, whereas I and ei are the branch magnetomotive force (mmf) and 

the electromotive force (emf). 

 

Analysing the geometrical form describing the function of the facet element reveals that the 

integrals in (13), describing the mmf and emf, may be viewed as the edge values of the potentials T 

and A for the edge described by a vector ri which starts at the centre Si of the facet and ends in the 

middle Qe of the element. The mentioned edge values may be treated as loop currents and fluxes in 



a mesh of the edge network, associated with the facet Si. For example, in the model of Fig. 2a such 

a loop is made up of the branches with nodes PjPqP8P5.  

 

When formulating the expressions for voltages uHi and uEi, across the reluctance and impedance, 

the constitutive equations are used H
1
B and E

1
J, whereas to describe the flux density B and 

current density J the functions of the facet element are used. Substituting yields 

 

 
q

V fqfiqHi
e

vu d1ww ,    
q

V fqfiqEi
e

viu d1ww  (14a,b) 

 

The summation above refers to all the facets of the element, the integrals (under the summation) 

describe equivalent reluctances and impedances, respectively, while q and iq are the facet values of 

the flux density B and current density J for the qth facet, respectively. Expression (14) suggests 

that in the facet model of the element couplings between branches may exist, as indeed was the 

case for the edge model. Consequently the mass matrices for edge element equations are also not 

diagonal, as is the case for the nodal elements. 

 

When setting up the equations for the edge element method the facet quantities are expressed in 

terms of the edge values. The following relationships hold for the qth facet 

 

 
jr

jrq
,

, ,      
jr

jorq ii
,

, ,  (15a,b) 

 

where r,j and ior,j are the edge values of A and T, respectively, for the edge PrPj of the facet Sq. For 

example, after applying (15a) to the facet S1 of Fig. 1b we find 1 2,3 3,6 6,5 5,2. The edge 

values of the potentials A and T represent the fluxes and currents in loops around the edge, that is 

in the loops of the facet network. Therefore (15) expresses the flux/current in the qth branch of the 

facet network in terms of fluxes/currents in loops around element edges. 

 

The equation of the edge element method for the edge PiPj is found by summing up the voltages umi 

and uei  for all branches QeSi around that edge, that is for those branches for which the node Si is 

related to the facet Si with the edge PiPj. The resultant sums are then equated to zero 

 

 
i

miu 0 ,        
i
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Incorporating (11) to (15) into the above results in 
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The right hand sides of these equations represent the resultant loop mmf jor , and loop emf jore , . 

These resultant mmf and emf may be established (a) from edge values of T and dA/dt, or (b) facet 

values of J and dB/dt. In the former case the potentials T and A in (13) are expressed in terms of 

their edge values. After substitution we find 
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,, ww . (18a,b). 

 

 The integral in (18) is dimensionless and may be treated as the weight parameter )(
,
i

jr  

 
eV jerfi

i
jr vd,
)(
, ww ,  (19) 

 



This parameter defines the weight of the loop current/flux around the edge PrPj (in the loop of the 

facet network) in the expression describing the current/flux in the loop of the edge network 

associated with the facet Si.  The parameter )(
,
i

jr  is also used in the above mentioned approach (b) 

where the loop mmfs and emfs are established on the basis of the facet values, leading to 
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The summation here refers to all facets Sq of elements sharing the common edge PrPj, while the 

parameter )(
,
q
jr  is a weight with which the current/flux passing through the loop of the edge 

network – hence through the facet Sq – is taken when the current/flux passing through the loop of 

the facet network (the loop around the edge PrPj) is calculated. As may be seen in Fig. 1 the 

significant proportion of the vectors representing the functions of the facet element is perpendicular 

to the vectors representing the functions of th edge elements. Thus the scalar product jerfi ,ww  of 

such vectors equals zero and the resulting weight parameter is also zero. For the element of Fig. 1a 

the only non-zero (and in fact equal to 1/8) weights are those which related to transformations 

between quantities related to facets and edges with parallel vectors. 

 

All the component terms discussed above appearing in the equations for the nodal element method 

using scalar potential formulations and the edge element method using vector potentials 

formulations are tabulated and presented in Table 1. 

 

Table 1. Components of the FEM equations 

Potential,          
type of network  

FE 

equations 
FE equation 
components 

Description of the 
integrands 

FE 
coefficients 

Substitutions, entries 
to  RHS vector  

, Edge-magnetic 0, ji  
eV jeiji vd,, Bw  qHpqep u ,,wHB  

eV qepjei vd,, ww  
qppqqHpu ,, , qp,  

V, Edge-electric 0, jii  
eV jeiji vi d,, Jw  qEpqep u ,,wEJ  

eV qepjei vd,, ww  
qppqqEp eVVu ,, , qpe ,  

A, Facet-magnetic 0miu  
eV fimi vu ddgraw  TTB qqfwgrad  

eV fqfi vdww  jrq , , 
eV fiw T  

T, Facet-electric 0eiu  
eV fiei vVu ddgraw  AAE ppgrad qfqiwV  

eV fqfi vdww  jorq ii , , 
eV fiw Ap  

Comments: i,j, ii,j are fluxes and currents associated with edges PiPj of common node; uHp,q, uEp,q are edge values 

H and E for edges PpPq; umi, uei are voltages associated with facets Si of common edge; q, iq are facet values of B 

and J expressed by edge values of A and T; i,j, ioi,j are edge values of A and T for PiPj; p ; p d/dt; 1/  

 

 
Approximate description of integrals in FE equations  

 
The integrals describing coefficients of the finite element method may be easily established using 

accurate analytical methods, but only for regular multi-sided elements and linear materials. 

Irregular elements and non-linear material properties inevitably call for approximate numerical 

methods. The authors of the article recommend the following approximation 
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where nn is the number of element nodes Pi, and f(Pi) is the value of the function f in the node Pi 

[5]. Application of this approximation results in significant simplification of the description of the 

coefficients of a mesh made up of parallelepiped elements. As an example, consider the 



coefficients of the equations describing the magnetic field in a magnetically non-linear region. 

When a scalar potential formulation  is employed the equation coefficients represent the 

permeance 
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whereas if a vector potential A is used they represent the reluctance 
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where (H) and 
1

(B). 

 

Applying (21) yields 
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iR  for i q,  (25a,b) 

 

where li,j is the length of the edge PiPj, Si is the surface area of the facet Si, i,j describes the 

magnetic permeability in the proximity of the edge PiPj, and i  is the reluctivity of the medium in 

the area close to the facet Si. For a system with magnetic non-linear characteristics 

 )( )()(5.0, jiji HH ,     
4

1

)(25.0
p

pi B , (26a,b) 

 

where Hi is the field intensity in the proximity of the node Pi of the edge PiPj, and Bp the flux 

density in the pth corner Pp of the facet Si. Hi may be found from the edge values of H, while Bp 

from the facet values of B. For example, for Figs 1a and 3 the value of Hi in the surrounding region 

close to Pi and the flux density Bp in the proximity of Pq may be calculated as 

 

 zjHizyiHyxpHixi huhuhu /// ,,1,, 111H   (27) 

 

 )/()/()/( 42 yxizzxyzyxp hhhhhh 111B  (28) 

 

When deriving the above equations it has been taken into account that the facet vectors are directed 

„into‟ the element, whereas the direction of the edges depends on the sequence of the indices in the 

description of the edge value (see Figs 1a and 2a). 

 

A closer inspection of (24) and (25) reveals that in the models following from application of the 

recommended approximating formula (21) there are no couplings between branches; hence the 

resulting mass matrix is diagonal and the coefficients express only self permeances/reluctances. 

Expressions (24a) and (25a) describing these permeances/reluctances are identical to those 

obtained form a classical formulation using magnetic networks, whose parameters may be 

established via the tubes and slices method [7]. For a hexahedron the geometrical forms are as 

shown in Fig. 3; it is taken into account that the permeance of the branch PiPj of the edge network 

is related to the „magnetic conductance‟ of a block of length li,j and cross section 0.25hxhy (Fig. 3a). 

The reluctance in the branch QeSi of the facet network, on the other hand, represents the „magnetic 

resistance‟ of a block of length 0.5li,j and cross section hxhy. 

 

 



 
 

Fig. 3. Geometric forms representing permeance (a) and reluctance (b). 

 
Conclusion 

 
Finite element equations may be derived from equivalent circuit models without the need for 

variational formulation. By exploiting the geometrical properties of interpolating functions the 

relevant parameters may be established using integral methods. The presented approach is valid not 

only for hexahedra and pentahedra but also for tetrahedra [1] and mixed finite elements [6]. The 

proposed approach promises to be very beneficial in teaching, especially to students well familiar 

with circuit methods, to whom the analogy of the finite element formulation to loop or nodal 

magnetic or electric networks may be appealing and easier to understand. Thus the teaching of 

computational electromagnetics may be seen as supplementing the circuit theory by the relevant 

information about the integral methods of calculating network model parameters, as argued in this 

paper. The presented methods are also helpful when formulating classical network models, such as 

described in [4]. 
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