Biological Effects of Radiofrequency Fields

Henry Lai

Department of Bioengineering University of Washington Seattle, WA USA

Radiofrequency radiation (RFR) has a very complicated interaction with biological tissues. Effects depend on many factors, e.g., frequency of the radiation, duration of exposure, waveform, etc.

Considerations

Do different modulations and wave characteristics affect biological systems differently?

Long-term vs acute exposure

Localized vs whole body exposure

Do modulations and different wave characteristics affect biological responses?

-an important consideration to understand biological effects of RFR and radiation from wireless technologies- different technologies have different wave characteristics.

-examples of modulation-dependency: D'Ambrosio (02); Huber (02); Hung (07) Do different modulations and wave characteristics affect biological systems differently?

Long-term vs acute exposure

Localized vs whole body exposure

Long-term vs acute exposure

Are effects cumulative?

Do responses change with duration/frequency of exposure? Do adaptation and break down of homeostasis occur? Do different modulations and wave characteristics affect biological systems differently?

Long-term vs acute exposure

Localized vs whole body exposure

Localized vs whole body exposure

 -simulation of cell phone use and exposure to radiation from transmission towers

-tissue/organ specific responses

Effects

Genetic effects
Reproduction/sperm effects
Brain cells (morphology and cell death)
Brain electrophysiology/functions
Free radical involvement
Low intensity effects

Genetic Effects

Aitken [05]; Belyaev et al. [05, 06]; D'Ambrosio [02]; Diem [05]; Ferreira [06]; Gadhia [03]; Gandhi and Anita [05]; Gandhi and Singh [05]; Lixia [06]; Markova [05]; Mashevich [03]; Nikolova [05]; Paulraj and Behari [06]; Phillips [98]; Sarimov [04]; Sun [06]; Sykes [01]; Tice [02]; Zhang [06]; Zotti-Martelli [05]

Reproduction/Sperm Effects

Agarwal (07); Aitken (05); Dasdag (99); Erogul (06); Forgacs (06); Fejes (05); Falzone (07); Ozguner (05); Panagopoulos (04, 07); Wdowiak (07); Weisbrot (03); Yan (07)

Brain Cells (morphology and cell death)

Markkanen (04); Marinelli (04); Nikolova (05); Panagopoulos (06); Persson (97); Salford (03); Zheo (06); Zmyslony (04)

Brain Electrophysiology/Functions

Von Klitzing [95]; Mann and Roschke [96]; Eulitz [98]; Freude [98]; Borbely [99]; Freude [00]; Huber [00] Hietanen [00]; Krause [00]; Lebedeva [00]; Jech [01]; Lebedeva [01]; Huber [02]; Croft [02]; D'Costa [03]; Huber [03]; Aalta [06]; Kramarenko [03]; Marino [03]; Hamblin [04]; Hinrich and Heinze [04]; Krause [04]; Papageorgiou [04]; Vorobyov [04]; Curcio [05]; Huber [05]; Loughran [05]; Ferreri [06]; Krause [06] Papageorgiou [06]; Krause [07]; Vecchio [07]; Hung [07]

Low Intensity Effects (whole body exposure, transmission towers) (0.0015 – 0.02 W/kg)

de Pomerai (03); Dutta (89); Fesenko (99); Forgacs (06); Ivaschuk (99); Kwee (01); Lebedeva (00); Magras and Xenos (99); Mann (98) ; Marinelli (04); Navakatikian and Tomashevskaya (94); Nittby (07); Novoselova (99); Novoselova (04); Persson (97); Phillips (98); Polonga-Moraru (02); Pyrpasopoulou (04); Salford (03); Sarimov (04); Schwartz (90); Somosy (91); Stagg (97); Stankiewicz (06); Velizarov (99); Wolke (96); Yurekli (06)

Cell Phone Biological Studies

	Effect	No Effect	Total
Industry-	27	69	96 (29%)
Funded	(28%)	(72%)	
Non-Industry-	154	76	230(71%)
Funded	(67%)	(33%)	
Total	181(56%)	145 (44%)	326

 $\chi^2 = 39.80 \ (p < .001)$

Involvement of Free Radicals -EMF enhances free radical activity and induces oxidative stress/damages in cells

Ayata (04); Balci (07); Friedman (07); Guney (08); Hoyta (08); Ilkan (04); Irmak (02); Koylu (06); Lai and Singh (97a, b, 2004); Moustafa (01); Oktem (05); Oral (06); Ozguner (04, 05, 06); Philippova (94); Stopczyk (02); Yariktas (05); Yurekli (06); Wu (08)

The Fenton Reaction

-an iron-related free radical generation chemical reaction

THE FENTON REACTION

EMF and the Fenton Reaction

-Adding iron to cells enhances the effect of EMF -Removing iron decreases the effect of EMF

Electromagnetic fields

THE FENTON REACTION

Most cancer cells have much higher concentration of iron than normal cells. EMF selectively kills cancer cells.

Ideal criteria of cancer treatment:

 (1) Selectively against cancer cells and not harmful to normal cells- low adverse side effect.
(2) Effective at low levels (intensity or dosage).
(3) Can be administered easily with little Stress/discomfort to the patient.
(4) Economical