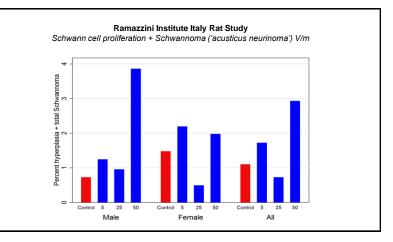
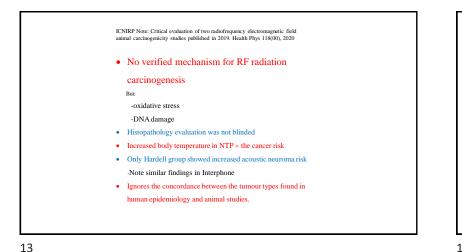

GLIOMA	Ipsilateral			
	Cases/controls	Odds	95 % Confidence	Contraction of the
	Numbers of exposed	Ratio	Interval	1 (J. 18 1)
nterphone 2010 Cumulative use ≥1,640 h	100/62	1.96	1.22 - 3.16	
Lumulative use ≥1,640 n		1.90	1.22-3.10	10-21-51
Coureau et al 2014				
Cumulative use <u>></u> 896 h	9/7	2.11	0.73 - 6.08	and a second second
lardell, Carlberg 2015				
Cumulative use ≥1,640 h	138/133	3.11	2.18 - 4.44	
Meta-analysis				
Cumulative use ≥1,640 h*	247/202	2.54	1.83 - 3.52	


Acoustic neuroma	Ipsilateral			CITE:
	Cases/controls Numbers of exposed	OddsRatio	95 % Confidence Interval	
Interphone 2010				
Cumulative use ≥1,640 h	47/46	2.33	1.23 - 4.40	
Hardell et al 2013				
Cumulative use ≥1,640 h	19/133	3.18	1.65 - 6.12	
Meta-analysis				
Cumulative use ≥1,640 h	66/179	2.71	1.72 - 4.28	

Нур	erplastic	Brain	Lesion	s in Ma	ale Rat	S	
	Control	GSI	Modula	ation	CDM	A Modu	lation
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg
Number examined	90	90	90	90	90	90	90
Malignant glioma‡	0*	3 (3.3%)	3 (3.3%)	2 (2.2%)	0	0	3 (3.3%)
Glial cell hyperplasia	0	2 (2.2%)	3 (3.3%)	1 (1.1%)	2 (2.2%)	0	2 (2.2%)


Sch	Iwannoi	mas Ob	served	l in Ma	le Rat	S	
	Control	Control GSM Modulation CDMA Modulation					
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg
Number examined	90	90	90	90	90	90	90
Heart [‡]	0*	2 (2.2%)	1 (1.1%)	5 (5.5%)	2 (2.2%)	3 (3.3%)	6** (6.6%)
Other sites	3 (3.3%)	1 (1.1%)	4 (4.4%)	2 (2.2%)	2 (2.2%)	1 (1.1%)	2 (2.2%)
All sites (total)	3 (3.3%)	3 (3.3%)	5 (5.5%)	7 (7.7%)	4 (4.4%)	4 (4.4%)	7 (7.7%)
* Historical control incid	ence in NTP	studies: 9/6	99 (1.3%),	range 0-6%	5		

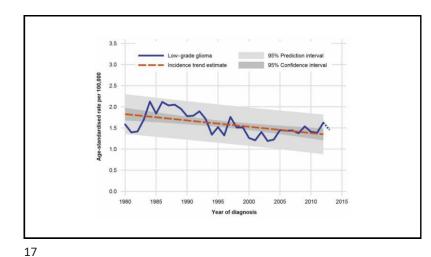
9

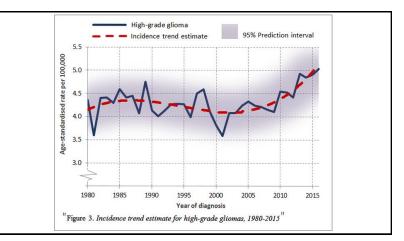
The EM Radiation Research Trust

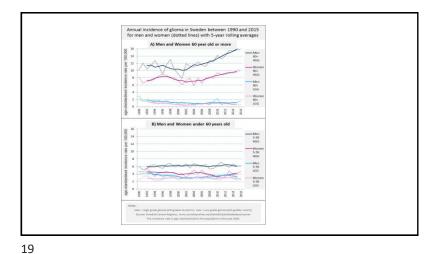
ICNIRP Commission

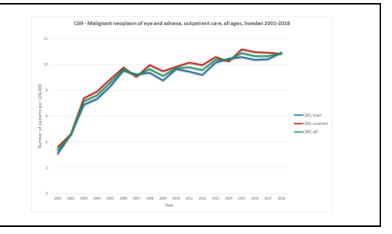
Rodney Croft, chair Maria Feychting, vice chair Adèle C. Green, MD Akimasa Hirata Guglielmo d'Inzeo Carmela Marino Sharon Miller Gunnhild Oftedal Tsutomu Okuno Eric van Rongen Martin Rösili Zenon Sienkiewicz Soichi Watanabe

14

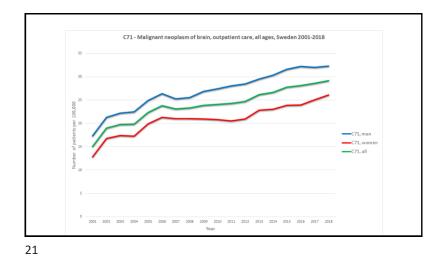

Karipidis K*, Elwood M, Benke G, Sanagou M, Tjong L, Croft RJ*. Mobile phone use and incidence of brain tumour histological types, grading or anatomical location: a population-based ecological study. BMJ Open. 2018 Dec 9;8(12):e024489. doi: 10.1136/bmjopen-2018-024489.

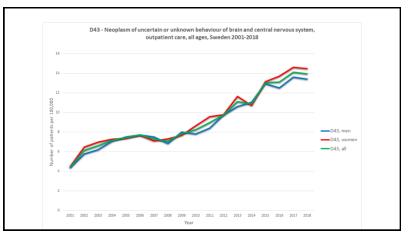

-glioblastoma (GBM) incidence increased significantly only during the period 1993-2002 (1982-2013) -increase in frontal lobe -ages 20-59. This represents about 39% of Australian brain tumours -age-standardised to WHO world standard population, which in no way represents the modern Australian population age-spectrum

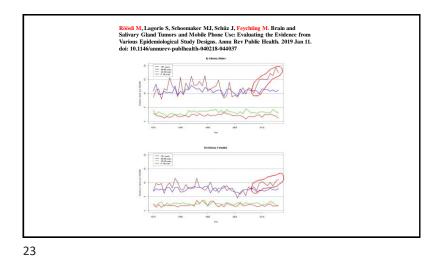


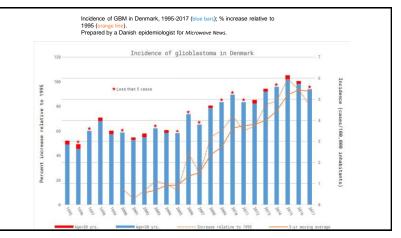

15

The EM Radiation Research Trust

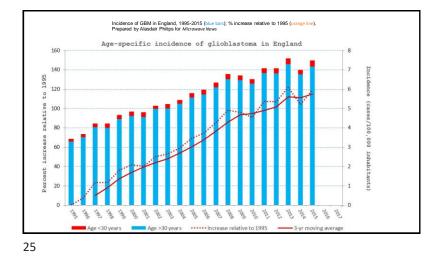


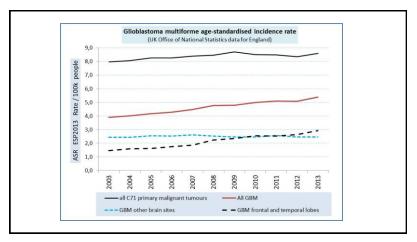





20

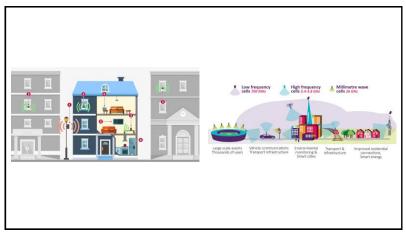
The EM Radiation Research Trust

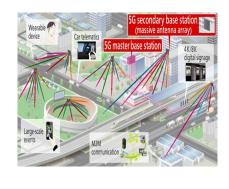




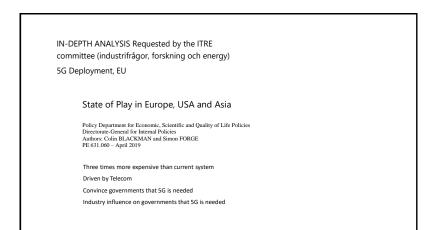
The EM Radiation Research Trust






Headache, tinnitus and hearing loss in the international Cohort Study of Mobile Phone Use and Health (COSMOS) in Sweden and Finland And Avera 1.2³ Matr Rychig J Adver Albom J Isna Hiler, 3,4 Paul Elliot, 5,6,7,8 Joechin Schu¹, 2⁴ Hans Rychig J Adver Albom J Isna Hiler, 3,4 Paul Elliot, 5,6,7,8 Joechin Schu¹, 2⁴ Hans Rychig J Adver Albom J Isna Hiler, 3,4 Paul Elliot, 5,6,7,8 Joechin Schu¹, 2⁴ Hans Rychig J Adver Albom J Isna Hiler, 3,4 Paul Elliot, 5,6,7,8 Joechin Schu¹, 2⁴ Hans Rychig Hein²¹ ware, 1 Katja Koja I Giorgio Tettamanti 3 and the COSMOS Study Group⁴ Response rate 20.4 % in Sweden, 7.4 % in Finland Excluded persons with headache, tinnitus, hearing loss at base line Weekly headache OR 1.21, 95 % CI 1.02-1.43 After that multiple adjustments including pain killers – no statistically significant increased risk

Radiofr	equency radiatic	on	
• 90 MHz	Radio	• 2000 MHz	3G
• 300 MHz	TV	• 2600 MHz	4G
• 700 MHz	5G	• 2450 + 5200 MHz	Wifi
• 800 MHz	4G	• 3400-3600 MHz	5G
• 900 MHz	2G, 3G	• 26500-27500 MHz	5G
• 1800 MHz	2G	(26,5-27,5 GHz)	
• 1900 MHZ	DECT Cordless phone		
			29



Two-way communication

Always trying to get best connection. Higher radiation level when buildnings, trees, vegetation, now, rain, fog etc. are involved May need indoor antenna

The notion of a "race" is part of the campaign but it is becoming clear that the technology will take much longer than earlier generations to perfect.

China, for instance, sees 5G as at least a tenyear program to become fully working and completely rolled out nationally. The technologies involved with 5G are much more complex.

One aspect, for example, that is not well understood today is the unpredictable propagation patterns that could result in unacceptable levels of human exposure to electromagnetic radiation.

Range reduced by square of distance Range available Focused beams: Rather than transmitting a wide area Frequency Problems broadcast spread over a segment of the cell around a 100 GHz -rain base station, an "active antenna" technique is used to -snow 10 GHz form a set of steerable radio beams with power -fog -trees, vegetation (especially during rain) focused on a small area - the receiving handset 1 GHz -buildings, walls, etc 300 MHz 10 100 1000 Range, metres (Log scale) 38

Typical range 20 – 150 meter at higher frequencies One square kilometer needs about 800 base stations if only 20 m range All need battery backup Small cell standards are needed to give the EU a way forward for high quality outdoor and indoor cellular connectivity to support a light-touch regulatory regime, essential to ensure rapid rollout of perhaps hundreds of small cells per square kilometer

39

5G Electromagnetic Radiation and Safety

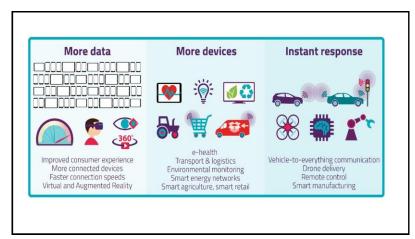
Significant concern is emerging over the possible impact on health and safety arising from potentially much higher exposure to radiofrequency electromagnetic radiation arising from 5G.

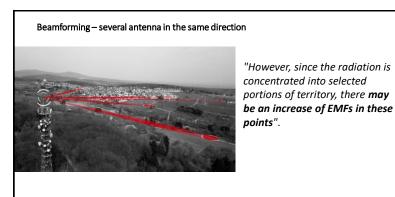
Increased exposure may result not only from the use of much higher frequencies in 5G but also from the potential for the aggregation of different signals, their dynamic nature, and the complex interference effects that may result, especially in dense urban areas. The 5G radio emission fields are quite different to those of previous generations because of their **complex beam formed transmissions in both directions** – from base station to handset and for the return.

Although fields are highly focused by beams, they vary rapidly with time and movement and so are **unpredictable**, as the signal levels and patterns interact as a closed loop system. This has yet to be mapped reliably for **real situations**, outside the laboratory

42

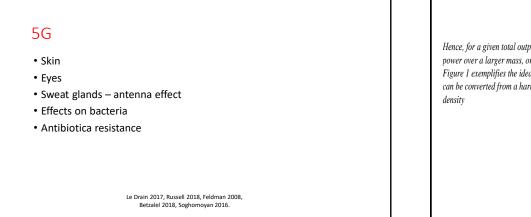
In line with EECC Article 57, the EU is crafting a regime for SAWAP deployment, aiming for permit-free installation from 2020.


The level of marketing activity is key, with intense lobbying of governments by equipment suppliers and operators – and also of the public by governments.

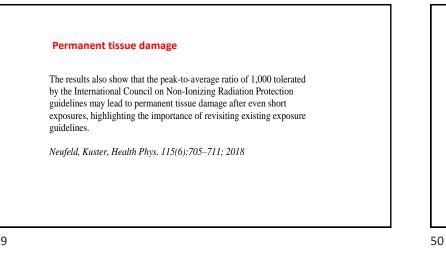

Recommendation 1: Increasing R&D efforts on the technology of 5G

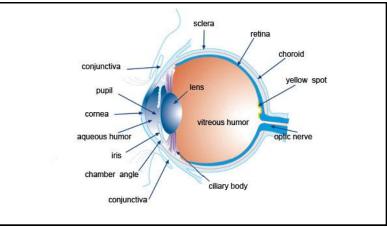
Long-term technology research is essential. One key problem is the unusual propagation phenomena, especially controlling and measuring RF EMF exposure with MIMO at mmWave frequencies for the handset and the base station.

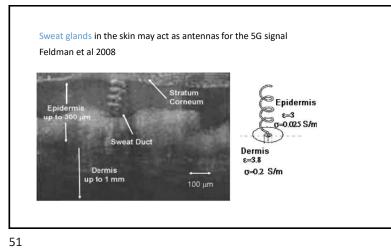
The technology presents challenges to the current level of expertise (based on previous generations of mobile cellular radio engineering) both for suppliers and standards organizations who must incorporate the specifications in future 5G standards

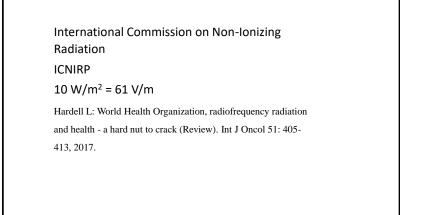

43

Chiaraviglio, L., Cacciapuoti, A. S., Martino, G. D., Fiore, M., Montesano, M., Trucchi, D., & Melazzi, N. B. (2018). Planning 5G Networks Under EMF Constraints: State of the Art and Vision. *IEEE Access*, 6, 51021–51037. https://doi.org/10.1109/ACCESS.2018.2868347

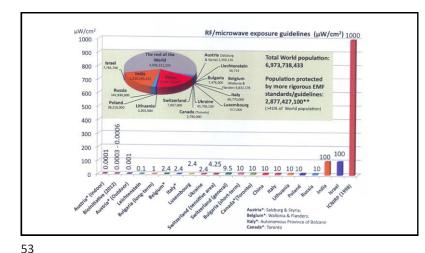

45

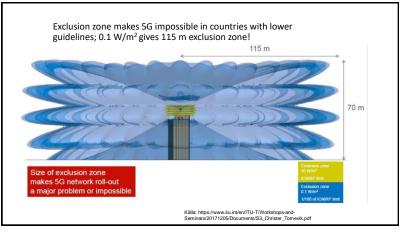


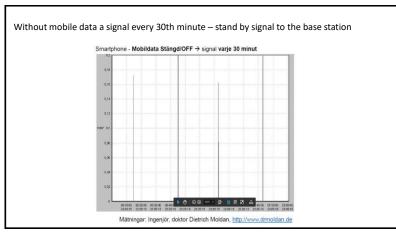

Hence, for a given total output power, SAR may be lowered by "spreading "the power over a larger mass, or equivalently, larger tissue volume. The picture in Figure 1 exemplifies the idea: a given amount of light power captured in a lens can be converted from a harmless state to a harmful one by increasing its density

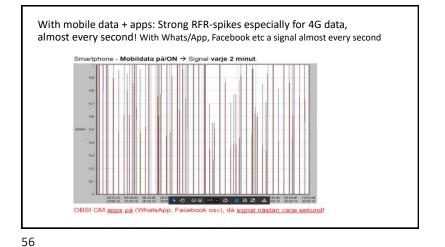


46









The EM Radiation Research Trust

Balmori (2009): http://www.ncbi.nlm.nih.gov/pubmed/19264463

Sivani & Sudarsanam (2012). http://www.biolmedonline.com/Articles/Vol4_4_2012/Vol4 _4_202-216_BM-8.pdf

WHO Radio Frequency fields: Environmental Health Criteria Monograph A 'formal risk assessment' was initiated by WHO in 2012. A draft was published in 2014.

Of the 6 members 4 are active in ICNIRP and 1 is a previous member.

The final document is still to be published

Table 1. Members of WHO Monograph core group and their involvement in different other groups.

Name	wнo	ICNIRP	UK/AGNIR	SSM	SCENIHR
Simon Mann	х	х	х		
Maria Feychting	х	х	х	Х*	
Gunnhild Oftedal	х	х			
Eric van Rongen	х	х		х	
Maria Rosaria Scarfi	х	Х*		х	х
Denis Zmirou	х				

*former

58

WHO: World Health Organization ICNIRP: International Commission on Non-Ionizing Radiation Protection AGNIR: Advisory Group on Non-Ionising Radiation SSM: Stralisäkerhetsmyndigheten (Swedish Radiation Safety Authority)

SCENIHR: Scientific Committee on Emerging and Newly Identified Health Risks

57

